Least-squares hp/spectral element method for elliptic problems

نویسندگان

  • Naga Raju
  • N. Kishore Kumar
  • G. Naga Raju
چکیده

The solution of elliptic boundary value problems often leads to singularities due to nonsmoothness of the domains on which the problem is posed. This paper studies the performance of the nonconforming hp/spectral element method for elliptic problems on non smooth domains. This paper deals with monotone singularities of type rα and rα log r as well as the oscillating singularities of type rα sin(ε log r).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

Parallel h-p Spectral Element Methods for Elliptic Problems on Non-smooth Domains

We propose a new parallel h-p Spectral element method to solve elliptic boundary value problems with mixed Neumann and Dirichlet boundary conditions on non-smooth domains. The method is shown to be exponentially accurate and asymptotically faster than the standard h-p finite element method. We use the auxiliary mapping of the form of z = ln ξ. The spectral element functions we use are fully non...

متن کامل

Non Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations

Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...

متن کامل

Nonconforming Least-Squares Method for Elliptic Partial Differential Equations with Smooth Interfaces

In this paper a numerical method based on least-squares approximation is proposed for elliptic interface problems in two dimensions, where the interface is smooth. The underlying method is spectral element method. In the least-squares formulation a functional is minimized as defined in (4.1). The jump in the solution and its normal derivative across the interface are enforced (in an appropriate...

متن کامل

Numerical Solution of Incompressible Cahn-Hilliard and Navier-Stokes System with Large Density and Viscosity Ratio Using the Least-Squares Spectral Element Method

There is a growing interest in numerically handling of the interface dynamics in multiphase flows with large density and viscosity ratio in several scientific and engineering applications. We present a parallel space-time implementation of a least-squares spectral element method for the incompressible Cahn-Hilliard and Navier-Stokes equations for different densities and viscosities between phas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009